Worksheet \#4

(Due Friday, September 6)

Problem 1. For the following expressions, calculate $\frac{d y}{d x}$.
a) $x^{3}+y^{3}=x y$
b) $x y^{2}=x^{2} y$
c) $x^{2}+x y+y^{2}=2 x$

Problem 2. A 10 foot ladder leans against a wall. The base of the ladder slides horizontally away from the wall at 2 feet per second. As a result, the top of the ladder moves down the wall. How quickly is the top of the ladder sliding down the wall when the bottom of the ladder is 1 foot away of the wall?

Problem 3. Identify the intervals in which the following functions are increasing or decreasing.
a) $f(x)=x^{4}-x^{2}+1$
b) $f(x)=\sqrt[3]{\left(\left(x^{3}-x^{2}\right)^{2}\right.}$

Problem 4. Identify the critical points of the following function and classify them.

$$
f(x)=\sqrt[5]{x^{3}+x^{2}-2 x}
$$

Problem 5. The probability of survival of sugar crops and maize crops through drought has been studied for 8 years. On the eight year, the probability of survival of sugar was 0.60 , while the probability of survival of maize was 0.83 . Based on the information of previous year, at the eight year the survival probability of sugar was being reduced at a rate of $0.02 /$ year, and the survival probability of maize was being reduced at a rate of $0.08 /$ year.
a) Using marginal analysis, estimate the probability of survival of a sugar plant in the ninth year of drought.
b) Using marginal analysis, estimate the probability of survival of a maize plant in the ninth year of drought.
c) Using marginal analysis, estimate the joint probability of survival of a sugar plant and a maize plant in the ninth year of drought. (Hint: The joint probability of two events happening is the product of the probabilities of those two events).

