Worksheet \#3

(Due Friday, August 30)

Problem 1. Calculate the derivatives of the following functions:
a)

$$
y=\csc (\tan (x))
$$

b)

$$
y=\sqrt{\frac{x+1}{x^{2}-2 x}}
$$

c)

$$
y=x^{2} \cos \left(x^{2}\right)
$$

d)

$$
y=\frac{(x+1)^{4}}{x-2}
$$

Problem 2. Suppose you have an object moving horizontally. Their position with respect to its original position x as a function of time (in seconds) is described as:

$$
x(t)=\frac{t \cos (t)}{t^{2}+1}
$$

Calculate the instantaneous velocity of this object at:
a) The start of its movement.
b) After 10 seconds.

Problem 3. Suppose you have a bicycle store and you want to analyse the potential profits of a new bike. Analysis with similar bikes has shown that the demand follows a linear relationship. Sales in other stores have provided you the following data points for the demand function.

p (\$/bike)	200	190	176.67	163.33
x (bike)	10	40	80	120

Suppose also that putting each bike in the store costs $\$ 100$ and you need to make an initial investment of $\$ 1200$ to start selling the bikes.
a) Construct the profit function $P(x)$.
b) At approximately what number of units sold will you start making a profit?
c) Calculate your marginal profit at that number of units.

